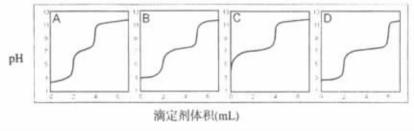

),


第35届国际化学奥林匹克竞赛理论考试题

第 35 届国际化学奥林匹克竞赛于 2003 年 7 月 5 日 - 13 日在希腊首都雅典市举行。59 个国家和地区共 232 位选手参加了本届竞赛。竞赛设金牌 30 枚 ,银牌 53 枚 ,铜牌 70 枚。我国 4 名选手全部获得金牌。他们是 :周焱(山西省实验中学)、晏琦帆(湖北省华中师大一附中)、倪犇博(江苏省启 东 中 学) 和 胡 蓉 蓉 (湖南省师大附中)。带领他们参赛的是北京大学段连运教授、武汉大学程功臻教授、季振平教授及北京大学裴坚副教授。

第一部分 普通化学

1	难溶钍盐 $ ext{Th}(ext{ IO}_3)_4$ 的溶解度 $($ 摩尔溶解度 $($ mol/L $)$ 是其溶度积 $($ mol/L $)$ 。
	(a) $s = (K_{sp}/128)^{1/4}$ (b) $s = (K_{sp}/256)^{1/5}$ (c) $s = 256 K_{sp}^{1/4}$
	(d) $s = (128 K_{sp})^{1/4}$ (e) $s = (256 K_{sp})^{1/5}$ (f) $s = (K_{sp}/128)^{1/5}/2$
_	
	下列公式中哪一个能用来精确地计算任意浓度 $c_{ m HCl}$ 下 Cl 水溶液中氢离子浓度 Cl H^+]?(Cl $R_{ m w}$ = 1 $ imes$ 10 $^{-14}$ M^2)()
	(a)[H ⁺] = c_{HCl} (b)[H ⁺] = c_{HCl} + $K_{w}/[H^{+}]$ (c)[H ⁺] = c_{HCl} + K_{w} (d)[H ⁺] = c_{HCl} - $K_{w}/[H^{+}]$
3	葡萄糖($ m C_6H_{12}O_6$)的摩尔质量是 $ m 180~g/mol~\it N_A$ 为阿伏加德罗($ m Avogadro$)常数。以下 $ m extit{m}$ 一句话 $ m extit{E}$ $ m extit{E}$ $ m extit{E}$ $ m extit{O}$ $ m extit{O}$
	(a) 将 90 $_{ m g}$ 葡萄糖溶于水中可制得 1000 $_{ m mL}$ 0.5 $_{ m M}$ 的葡萄糖水溶液。
	(b)1.00 毫摩尔(mmol)葡萄糖的质量为180 毫克(mg)。
	(c) 0.0100 摩尔的葡萄糖含 $0.0100 \times 24 \times N_{_{ m A}}$ 个原子。 (d) $90.0~{ m g}$ 葡萄糖含有 $3~\times N_{_{ m A}}$ 个碳原子。
	(e) 100 mL 0.10 M 溶液中含 18 g 葡萄糖。
4	若液态化合物 B 的密度为 ρ (单位是 g/cm^3) M 是 B 的摩尔质量 (单位是 g/mol) N_A 为阿伏加德罗(Avogadro)常数 ,那么
В	的体积为1升时的分子数是()
	(a)(1000× ρ)/(M×N _A) (b)(1000× ρ ×N _A)/M (c)(N _A × ρ)/(M×1000) (d)(N _A × ρ ×M)/1000
5	反应 Ag ₂ CrO ₄ (s) + 2Cl ⁻ (aq.)==2AgCl(s) + CrO ₄ ²⁻ (aq)的平衡常数表达式是()
	(a) $K = K_{\text{si(Ag2CrO}_4)} / K_{\text{si(AgCl)}}^2$ (b) $K = K_{\text{si(Ag2CrO}_4)} K_{\text{si(AgCl)}}^2$
	(c) $K = K_{st(AgCl)} / K_{st(Ag2CrO_4)}$ (d) $K = K_{st(AgCl)}^2 / K_{st(Ag2CrO_4)}$
	(e) $K = K_{\text{sf(Ag2CrO}_4)} / K_{\text{sf(AgCl)}}$
6	要得到 pH 约为 7.2 的磷酸盐缓冲溶液 "应当向 100.0 mL 的 0.100 M $\mathrm{H_3PO_4}$ 溶液中加入 1.00 M NaOH 溶液多少毫升?
(H_3PO_4 的 pK 分别为 $pK_1 = 2.1$, p $K_2 = 7.2$, p $K_3 = 12.0$ (
	(a)5.0 mL (b)10.0 mL (c)15.0 mL (d)20.0 mL

7 用标准强碱溶液滴定含 H_3PO_4 和/或 NaH_2PO_4 的溶液。根据被滴定的样品溶液中 H_3PO_4 和/或 NaH_2PO_4 的组成 ,判断出其滴定曲线图。(横坐标为滴定剂的量 纵坐标为 pH), H_3PO_4 的 pK 值分别为 $pK_1 = 2.1$, $pK_2 = 7.2$, $pK_3 = 12.0$)

- (a)样品仅含有 H₃PO₄ 曲线 A(), 曲线 B(), 曲线 C(), 曲线 D() (b)样品含有 H₃PO₄及 NaH₂PO₄,且它们的摩尔比为 H₃PO₄: NaH₂PO₄ = 2: 1 曲线 A(), 曲线 B(
- 曲线 C(),曲线 D() (。) 样只会有 H DO B Na H DO 日常们的麻尔比为 H DO:Na H DO 1: 1 — 曲线 A () 、曲线 B ()

曲线 C(), 曲线 D() 8 含 N N - 二甲基肼(CH,), NNH, 及 N, O, (均为液体)的燃料/氧化剂体系常被用于空间飞行器的推进燃料。这两种组分按 化学计量混合,这样得到的产物只有 N₂, CO₂和 H₂Q(反应条件下均为气态)。试问从 1 mol(CH₂), NNH₂完全反应可以得到多 少摩尔气体?() 8 (b) 9 (c) 10 (d) 11 (e) 12 (a) 9 完全电解 1 mol 水需要多少电量 ?(F 为法拉第(Faraday)常数)((a) F (b) (4/3) F (c) (3/2) F (d) 2 F (e) 3 F 10 下列每一个核反应中粒子 X 是什么?() (a) $_{30}^{68}$ Zn + $_{0}^{1}$ n \longrightarrow $_{28}^{65}$ Ni + X α粒子(),β粒子(),γ射线),中子((b)¹³⁰Te + ²H → ¹³¹I + X α 粒子(),β粒子(),γ射线) , 中子((c)²¹⁴₈₂Pb — 2¹⁴₈₃Bi + X α粒子(), β粒子(), γ射线),中子((d)²³Na + ¹₀n → ²⁴Na + X α 粒子(),β 粒子(),γ 射线(),中子($(e)^{19}_{9}F + {}^{1}_{0}n \longrightarrow {}^{20}_{9}F + X \quad \alpha$ 粒子(),β 粒子(),γ 射线(),中子() 11 将相同温度的 10.0 mL 0.50 M HCl 与 10.0 mL 0.50 M NaOH 溶液在量热计内混合后,测得温度增加 ΔT。若使用的 0.5 M NaOH 的量不是 10.0 mL 而是 5.0 mL ,且假定热量损失可忽略不计 ,同时这 2 种溶液的比热相同 ,请估算温度的变化。 () (a) $(1/2) \times \Delta T$ (b) $(2/3) \times \Delta T$ (c) $(3/4) \times \Delta T$ (d) ΔT 12 自然界中锑由以下 2 种稳定同位素组成:1²¹Sb , 1²³Sb。自然界中氯由以下 2 种稳定同位素组成:²⁵ Cl , ³⁷ Cl。自然界中氢 由以下 2 种稳定同位素组成: ¹H , ²H。在低分辨质谱图中正离子 SbHCl*会出现几个峰?((b) 5 (c) 6 (d) 7 (e) 8 (f) 9 13 某实验中 x 射线的最小衍射角为 11.5 度,据此判断,该晶体在下列哪个角度产生二级衍射? (a) 22.0 度 (b) 22.5 度 (c) 23.0 度 (d) 23.5 度 (e) 24.0 度 14 如下图所示,有机弱酸 HA 的未解离形式可以被不溶于水的有机溶剂从水相中萃取至有机相。 有机相 organic phase 对于这个萃取过程,以下说法正确(Y)还是错误(N)?((a) HA 酸在两相中的分配系数(K_n)决定于水相的 pH Y (b) 只有从酸性水溶液中 HA 才能被有效地萃取出来 Y N (c) HA 酸在两相中的分配比(D)决定于水相的 pH Y N (d) HA 酸在两相中的分配比(D)主要决定于其浓度 N 15 回答以下有关比尔(Beer)定律的说法是正确(Y)还是错误(N)?((a) 吸光度与吸光物质的浓度成正比 Y Ν (b) 吸光度同入射光波长成线性关系 Ν (c) 透射率的对数与吸光物质的浓度成正比 Y N (d) 透射率与吸光度的对数成反比 Y Ν (e) 透射率与吸光物质的浓度成反比 Y N 16 以下列不同单位表示的单色光相当于多少纳米(nm)的波长? (a) 3000 Å 150 nm (), 300 nm (), 600 nm (), 5000 nm() (b) 5×10^{14} Hz 150 nm (), 300 nm (), 600 nm (), 5000 nm ()

), 5000 nm (

), 5000 nm (

)

)

(c) 2000 cm⁻¹ 150 nm(), 300 nm(), 600 nm(

), 300 nm(), 600 nm(

(d) 2×10^6 GHz 150 nm (

17 已经测得弱酸 HX 溶液的吸光度数据。从图中选择符合以下所列条件的工作曲线:

žinď	A	В
吸光度	c	D
		。 」总浓度

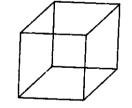
- (a) 使用纯净的 HX 水溶液 其中只有未解离的 HX 对光有吸收 曲线 A () 曲线 B () 曲线 C () 曲线 D ()
- (b) 使用纯净的 HX 水溶液 其中只有 X^- 阴离子对光有吸收 曲线 A(-) 曲线 B(-) 曲线 C(-) 曲线 D(-)
- (c) 在 HX 水溶液中加入过量强碱 ,其中只有未解离的 HX 对光有吸收 曲线 A() ,曲线 B() ,曲线 C() ,曲线 D()
- (d) 在 HX 水溶液中加入过量强酸 ,其中只有未解离的 HX 对光有吸收 曲线 $A(\)$,曲线 $B(\)$,曲线 $C(\)$,曲线 $D(\)$
- (e)使用纯净的 HX 水溶液 测量时选用 HX 和 X^- 的摩尔吸光系数相等且不为零的波长。HX 及 X^- 均对光有吸收。 曲线 A(-) 曲线 B(-) 曲线 C(-) 曲线 D(-)
- 18 以下哪一个为最强酸?()
 - (a)高氯酸, HClO₄ (b)氯酸, HClO₃ (c)亚氯酸, HClO₂
 - (d)次氯酸, HClO (e)由于它们均含氯, 因而它们为酸度相等的强酸。
- 19 下列哪种结构型式最适合描述配位数为 8 的铁晶体 ?()
 - (a)简单立方 (b)体心立方 (c)立方最密堆积 (d)六方最密堆积 (e)以上都不是
- 20 以下哪个元素的第三电离能最大?()
 - (a)B (b)C (c)N (d)Mg (e)Al
- 21 哪一个第二周期元素的前六级电离能与下表数据相符 ?(电离能 IE 以电子伏 eV 表示)

IE_1	${ m IE}_2$	${ m IE}_3$	IE_4	IE_5	IE_6
11	24	48	64	392	490

(a)B (b)C (c)N (d)O (e)F

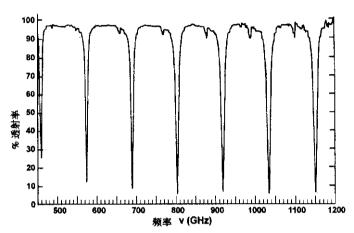
- 22 固体金属银的堆积方式为面心立方(fcc)
- (a) 利用右图画出面心立方(fcc)晶胞
- (b) 在该晶胞中的原子个数是多少?
- (c) 银的密度为 10.5 g/cm3该晶胞的边长为多少?
- (d) 晶体中银原子的原子半径是多少?
- 23 以下说法是正确的(Y)还是错误的(N)?

S WINDELMIN I DECEMENT.		
(a) HF 的沸点比 HCl 的沸点高	Y	N
(b)HBr的沸点比 HI的沸点低	Y	N
(c) 用浓硫酸与 KI 反应可以制取纯净的 HI	Y	N
$\left(\mathrm{~d} \right)$ 氨水是缓冲溶液 因为含有 $\mathrm{NH_{3}}$ - $\mathrm{NH_{4}}$ +共轭对	Y	N
(e)80 °C 下的纯水是酸性的	Y	\mathbf{N}
(f)使用石墨电极电解 KI 水溶液时 、阴极附近 pH 小于 7	Y	N


24 在一定的浓度和温度下 , HNO_3 与 Zn 反应后得到的还原产物为 NO_2 及 NO ,它们的摩尔比为 1: 3。计算 1 摩尔 Zn 需消耗 多少摩尔的 HNO_3 ?()

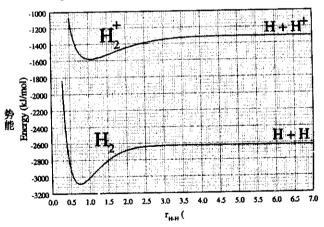
(a) 2.2 (b) 2.4 (c) 2.6 (d) 2.8 (e) 3.0 (f) 3.2

第二部分 物理化学


25 μ子是轻子家族中的一种亚原子粒子,它和电子带同样大小的电荷,磁性也一样,但质量不同,且不稳定。也就是说,在它刚生成的若干毫秒内就会蜕变为其它粒子。在本题中,将使用 2 种不同的方法来确定它的质量。

(1)_μ 子最常见的自发蜕变反应为 ;μ ——e + v_e + v_u

这里 ν_e 为电子的反中微子 ν_μ 为 μ 子的中微子。在某次实验中使用静止的 μ 子,蜕变时 ν_e + ν_μ 一起拥有 2.000×10^{-12} J (焦)的能量,电子的动能为 1.4846×10^{-11} J (焦)。计算 μ 子的质量。


通常,当光子的能量等于分子能级间的能量差(即 $h_{\nu} = \Delta E$)时,才会产生跃迁。只有相邻转动能级之间的跃迁才能被观测到,所以有 $\Delta E = E_{J+1} - E_J = 2 B(J+1)$ 。因此,依照 $h(\Delta \nu) = 2 B$ 公式,出现了逐级转动跃迁,并得到如下等间距的谱图。

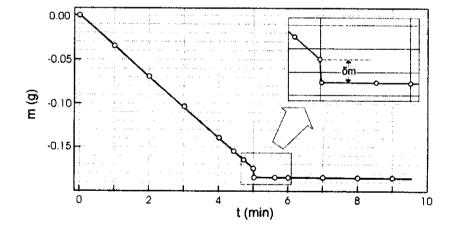
利用上图 给出12 C16 O 分子的以下物理量(带单位):

(a) $\Delta \nu$ (b) B (c) R

27 氢分子 下图给出了 H₂和其正离子 H₂⁺的势能曲线图。

根据图中所给的信息 回答下列问题 答案应有合适的单位。

- (1) H₂和 H₂ + 的平衡键长分别是多少?
- (2) 由 H 和 H 形成 H_2 的结合能及由 H 和 H^+ 形成 H_2^+ 的结合能分别是多少?
- (3) H₂分子的电离能是多少?
- (4) H原子的电离能是多少?
- (5) 如果使用频率为 3.9×10^{15} Hz 的电磁辐射来电离 H_2 分子 活忽略分子的振动能 那么电离出来的电子的速度是多少? 28 冰点降低测定法


化学家常需要一种温度能在水的冰点(0 °C)以下和 CO_2 的升华点(-78 °C)以上的冷浴来控制反应。为此,将冰水混合物和 NaCl 混合 通过控制 NaCl 的用量,可使温度达到 -20 °C。我们准备了一个热绝缘的容器,内装 1 千克 0 °C 的冰和 150 克 NaCl。将字母 Y 或 N 用圆圈圈出以表示下列叙述正确或错误。

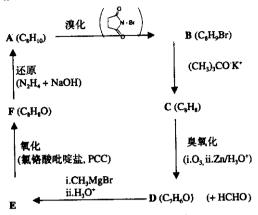
%NaCI

⁽⁾ -10

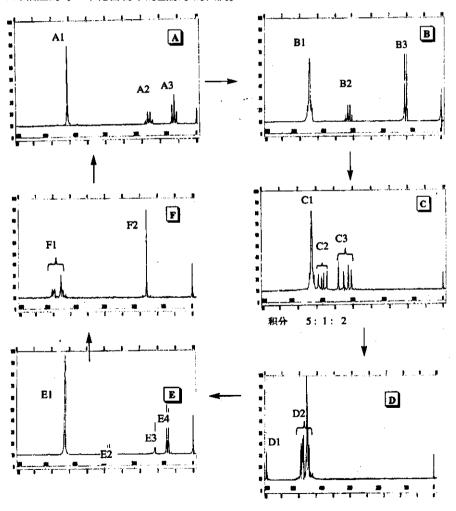
- (1) 这个混合过程是自发的
- (2) 在这个混合过程中 熵的变化值是负的 Y
- (3) 右图示出了 NaCl 水溶液的冰点与溶液中 NaCl 含量(质量百分比)之间的关系。 根据图形 确定上述冷浴的冰点。
- (4) 如果用等质量的 MgCl。代替 NaCl 冰点是否会升高?
- 29 游泳池 一个很大的游泳池装满了温度为 20 ℃的水 用一个功率为 500 ₩ 的电阻器 加热 20 分钟。假定游泳池中的水除了电阻器外不与任何物体接触,计算以下的物理量:
 - (1) 传递给水的热量
 - (2) 电阻器的熵变是正的、负的或是零?(
 - (i) $\Delta S_{\text{BB}} > 0$
- (ii) $\Delta S_{\text{BB}} = 0$
- (iii) ΔS_{BB} < 0
- (3) 水的熵变是正的、负的或是零?()
 - (i) $\Delta S_{7Kith} > 0$
- (ii) $\Delta S_{7k;th} = 0$
- (iii) ΔS_{7Kih} < 0
- (4) 整个体系的熵变是正的、负的或是零?(
 - (i) $\Delta S_{\rm m} > 0$
- (ii) $\Delta S_{\Xi} = 0$
- (iii) $\Delta S_{\underline{B}} < 0$
- (5)该过程是否可逆? Y Ν

30 气体速度 本实验给出了测定易挥发液体气相分子平均速度 u 的一种简单方法。在电子天平上放置培养皿 并将盖子放 于培养皿一旁,加入一半高度的乙醇,在时间 t = 0 时,将天平读数调至 0。随时间推移,天平的读数记录于下图中。在时间 t = 5 分钟(min)时,用盖子将培养皿盖上,此时液体不再挥发,容器内的气体分子不断碰撞盖子,使得天平的读数降低 δ m。因此 施加于盖子上的压力 $f = \delta$ m 克。该压力亦等于挥发分子力矩变化的速率 即 $f = 1/2 \times u \times \frac{dm}{L}$ 。假设 g = 9.8 m s⁻² 利用下图中所提供的数据计算 290 K 温度下乙醇分子的平均速度。

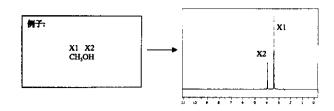
第三部分 有机化学


酯类化合物的鉴定 具有光学活性的二酯 (diester)A,只含有元素 C,H和 O。将 2.81 g二酯 A用 30.00 mL 1.00 M NaOH 溶液皂化。皂化后,该溶液只需用 6.00 mL 1.00 M HCl 溶液滴定未反应的 NaOH。皂化后产物是一个没有光学活性的 二羧酸 B , 甲醇(MeOH)和一个具有光学活性的醇 C。醇 C 与 I,/NaOH 反应后生成一个黄色沉淀和 C, H, COONa。

二羧酸化合物 B 在 CCl, 中与 Br, 反应生成一个单一的没有光学活性的化合物 D. 二羧酸 B 在臭氧化后也只有一个产物。


- (1) 计算出化合物 A 的分子量。
- (2) 画出化合物 A、B 和 C 的结构式(无立体化学要求)。
- (3) 用楔形黑粗线和虚线画出醇 C 可能的立体结构。
- (4) 画出化合物 D 的费歇尔投影式。
- (5) 画出二羧酸 B 的立体结构式。
 - 二酯 A 也能在 CCl_4 中和 Br_5 反应 ,并生成二种都具有光学活性的化合物(E 和 F).
- (6) 画出化合物 E 和 F 所有可能的费歇尔投影式。并对所有的费歇尔投影式用 R 或 S 标明其立体构型。

若用 Na¹⁸OH 皂化二酯 A ,氧同位素¹⁸O 是否将只在化合物 B 中有、只在化合物 C 中有或在化合物 B 和 C 中都有?


- (7) 选出正确答案()
- (a) 只在B中有 (b) 只在C中有 (c) B和C中都有
- 32 NMR 问题 有机化合物 A(C₈H₁₀)可以按以下的反应链进行反应:

根据题中所给的 1H – NMR 图 , 分别画出化合物 A、B、C、D、E 和 F 的结构式 , 并按下面例子中所示的方式在每一个结构式分别标出与 1H – NMR 峰相应的每一个化合物中的氢原子的归属。

提示:所有的 NMR 图中 都在 60~MHz Perkin Elmer 核磁共振仪并用 $CDCl_3$ 作溶剂下完成的。在通常条件下(曝露在空气、 光 和水蒸气中) 一些酸性的杂质可能会在 $CDCl_3$ 溶液中催化某些氢原子的快速交换反应。

33 肽 α-氨基酸和肽的消旋化反应通常是通过α-烯醇化机理进行的加热和强碱都能大大地加快这个反应过程:

(1) 以上的反应式表示了下面二个含羟基氨基酸 A 和 B 的烯醇化过程 ,在按 α – 烯醇化机理进行的过程中 ,混合物中的氨基酸组份已达到了平衡。用楔形黑粗线和虚线分别画出化合物 I 和 II 可能的立体结构:

化合物 A: 丝氨酸(serine $X = (-CH_2OH)$

(2) 在下列答题框中分别用(选择你所画出的化合物 A 的 I 和 II 结构式之间以及化合物 B 的 I 和 II 结构式之间的正确关系。

在肽的合成中,为了形成新的肽键,通常要将羧基活化,因此,在羧基上须连接一个易离去基团(如下图所示):

在如上的合成过程中,通常会发生第二个消旋化反应;酰氨基上的氧与活化的羧基正好相差 5 个原子,这个氧原子将会在分子内进攻羧基生成五元环中间体(一个氮杂环丁内酯),这个中间体可以在手性中心与其氢原子达成平衡(如下图所示):

(3) 画出这个中间体 $\mathbb C$ 的结构式 ,它是 2 个氮杂环丁内酯之间转换的中间体 ,并能用来解释在手性中心发生的立体构型翻转现象:

氮杂环丁内酯是活性很高的物质,它仍能与氨基酸中的氨基反应。因此,这个偶联反应尽管会有消旋化或差向异构化的产物,但仍能将反应进行彻底。

- (4) 如果将N 苯甲酰基甘氨酸 $C_9H_9NO_3$,与乙酸酐一起加热到40% ,会转化成一个极其活泼的化合物 P_1 ($C_9H_7NO_2$)。
 - A. 画出化合物 P. 的结构式。
- B. 画出化合物 P_1 与 S 丙氨酸乙酯(P_2 S alanine ethyl ester "丙氨酸的侧链为甲基)的反应式 ,用楔形黑粗线和虚线来表示反应物和产物的立体结构。

第四部分 无机化学

34 铝 希腊最大的工厂之一位于 Delphi 古城附近 ,它利用从 Parnassus 山中开采的铝土矿来生产氧化铝和金属铝。铝土矿是一种铝的氧化物和氢氧化物的混合物 其化学式为 AlO_{x} (OH) $_{x=x}$ 其中 0 < x < 1.

金属铝可以通过以下 2 个步骤生产:

(1) <u>拜尔过程</u>: 铝土矿的萃取、纯化和脱水(工业上使用的铝土矿的典型组成为40%-60% Al_2O_3 ,12%-30% H_2O_4 还含有 1%-15% 游离和非游离的 SiO_2 ,7%-30% Fe_2O_3 ,3%-4% TiO_2 ,0.05%-0.2% 的 F、 P_2O_5 和 V_2O_5 等)。这个过程包括先将铝土矿在 NaOH 水溶液中溶解 除去不溶的杂质 ,再将氢氧化铝沉淀出来,最后将其在 1200 $^{\circ}$ C 加热。完成并配平该过程中下列所有的反应式:

(2) <u>Héroult – Hall 过程</u>: 先将纯的三氧化二铝 Al_2O_3 溶解在熔融的冰晶石 Na_3AlF_6 中再电解。典型的电解质组分范围为 Na_3AlF_6 (80% –85%), CaF_2 (5% –7%), AlF_3 (5% –7%), Al_2O_3 (2% –8% 间断性添加)。电解在 1 大气压和 940 °C、 炭质内衬的钢池 (阴极)以及石墨为阳极下进行。配平以下电解反应式:

$$Al_2O_3(1)$$
 + $C($ 阳极 $)$ — $Al(1)$ + $CO_2(g)$

由于冰晶石是一种非常稀有的矿石,它常采用以下的反应来制备。完成并配平下列反应式:

$$HF + A(OH)_3 + NaOH \longrightarrow Na_3AlF_6 +$$

在其电解过程中,常有几个平行的反应会发生,结果导致阳极石墨的降解消耗或产率的降低。

(3) 根据下面所给的热力学参数(不受温度影响),计算下列反应在 940 °C 下的热力学物理量 ΔH 、 ΔS 和 ΔG C(石墨) + CO,(g) —→2CO(g)

	Al(s)	Al ₂ O ₃ (s)	C(石墨)	CO(g)	CO ₂ (g)	O ₂ (g)
$\Delta_{\mathrm{f}}\mathrm{H}^{\mathrm{o}}$ (kJ. mol $^{-1}$)	0	- 1676	0	-111	- 394	
S° ($J. K^{-1}. mol^{-1}$)	28	51	6	198	214	205
$\Delta_{\mathrm{fus}}\mathrm{H}$ (kJ. mol $^{-1}$)	11	109				

(4) 在相同的温度下 利用第(3)小题的参数计算下列反应的热力学物理量 ΔH 和 ΔC 写出你的计算过程):

$$2AI(1) + 3CO_2(g) \longrightarrow Al_2O_3(1) + 3CO(g)$$

假定 $\Delta S = -126 \text{ J K}^{-1} \text{ mol}^{-1}$ 。

- (5) 纯铝是一种银白色的金属,其晶体结构为面心立方。铝很容易溶解在热的浓盐酸中,生成阳离子[Al(H_2O)。 J^{3+} ,而在室温下铝与强碱反应生成水合的四羟基铝阴离子[Al(OH)。 J^{1-} [IH] (IH)。在这二种反应中都有氢气产生。将 IH2 IH3 IH4 IH5 IH6 IH6 IH7 IH8 IH9 IH
- (6) AlCl₃是一种 Al(III) 的配位数为 6 的层状晶体,但在其熔点(192.4 °C)时,其结构转变成 4 配位的二聚体分子,分子式为 Al₂Cl₆。在气相和高温状态下,此共价配位键组成的二聚体分子离解成平面三角形的分子 AlCl₃。在气相中,测得二聚体分子的 2 种不同的 Al $_{\rm Cl}$ 键长分别为 206 和 221 pm。画出此二聚体的立体结构式,并在结构式中标出相应 Al $_{\rm Cl}$ 的键长。
 - (7) 分别写出在 Al, Cl, 和 AlCl, 中铝原子的杂化轨道?
- 35 动力学 酸催化反应 $CH_3COCH_3 + I_2 \rightarrow CH_3COCH_2I + HI$ 对于 H^+ 是一级反应。在固定 H^+ 的浓度 改变反应物 起始浓度下 测量碘的浓度每降低 0.010 mol L^{-1} 所需的反应时间。
 - (1) 根据下表中提供的数据 在空格中填上数据。

[CH ₃ COCH ₃](mol L ⁻¹)	[I ₂](mol L ⁻¹)	时间(min)
0.25	0.050	7.2
0.50	0.050	3.6
1.00	0.050	1.8
0.50	0.100	3.6
0.25	0.100	
1.50	•••	•••
•••	•••	0.36

- (2) 推导所观测到的这个反应的反应速率方程并计算表观速率常数。
- (3) 计算在过量的 I₂存在时 反应掉 75% CH₃COCH₃所需要的反应时间。
- (4) 假定其它反应物的起始浓度固定不变,分别画出反应速率与[CH,COCH,]以及反应速率与[I,]的关系图。
- (5) 假定反应温度从 298 K 起 ,每升高 10 ℃反应速度是前一个速度的 2 倍 ,计算此反应的活化能。

附:

基本常数

 名称	符号	值	单位
光速	c	$\frac{299\ 792\ 458}{4\pi\ x10^{-4}} = 12.566\ 370\ 614x$	m s ⁻¹
真空的透过率	μ_0		N A ⁻²
真空介电常数	$oldsymbol{arepsilon}_0$	$10^{-7}_{\mu_0}c^2 = 8.854\ 187\ 817\ x\ 10^{-12}$	C^2 m $^{-2}$ N $^{-1}$ 或 F m $^{-1}$
普朗克常数	h	6.626 068 76 x 10 ⁻³⁴	J s
电子电荷	e	1.602 176 462 x 10 ⁻¹⁹	C
电子质量	m_e	9. 109 381 88 x 10 ⁻³¹	kg
质子质量	m_{p}	1.672 621 58 x 10 ⁻²⁷	kg
阿伏加德罗常数	N_{A}	6.022 141 99 x 10 ²³	mol -1
法拉第 常数	F	96 485.3415	C mol -1
波耳茲曼 常数	k	1.380 650 3 x 10 ⁻²³	J K ⁻¹
摩尔气体常数	R	8.314 472	J K $^{-1}$ mol $^{-1}$
原子质量单位	u	1.660 538 73 x 10 ⁻²⁷	kg

资料来源: Physics Today 55 BG6 (2002)

常用单位换算关系

1 mol dm⁻³常缩略为 1 M.

$$1 L = 1 dm^3 = 1000 cm^3$$

 $1 \text{Å} = 10^{-10} \text{ m}$

1 cal = 4.184 J

可能用到的公式

$$\mu = \frac{m_1 m_2}{m_1 + m_2}$$

$$E_n = \frac{-Z^2 e^2}{(4\pi\varepsilon_{\circ})2n\alpha}, \alpha = \frac{(\frac{h}{2\pi})^2 (4\pi\varepsilon_{\circ})}{\mu e^2}$$

$$2 d \sin\theta = n \lambda$$
$$E = mc^2$$

动能 =
$$1/2mv^2$$

 $k = Ae^{\frac{E_a}{RT}}$

书讯 由国家教育部师范教育司组织编写的《基础教育新课程师资培训指导——初中化学》由北京师范大学出版社出版。本书全面梳理了在研制初中化学课程标准编写新课程实验教材,贯彻实施新课程的教学理念和方法。实践探索新课程以及在新课程宣传和培训过程中的思考、行动、体会、经验和反思。本书全面介绍了"义务教育化学课程标准"的特点,化学课程改革的目的和方向;对化学新课程的教学方式和评价方式进行了综合研究,对新课程实施与推广以及对新课程教师培训进行了深入探索,对新课程进行了更深层地、多维度地、更注重理论与实践相结合地、也更有针对性地研究。为教师全面了解初中化学新课程提供了翔实的资料。该书被教育部师范司列为化学新课程教师培训必备参考书。

本书定价 28.00 元,欢迎广大教师订购。欲订购的老师可以直接和《化学教育》编辑部联系。每册订购邮寄加 15% 的邮寄费,请在附言栏注明邮购册数。